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The vanishing of the first term defines the extremum condition and the sign of
the second term decides whether the extremum is stable or merely a saddle point.

Show that among all f(x,v) with a given E,M and p(x), the entropy is
extremized by the Maxwellian distribution function with

f(xv) =@Q2aT)? p(x)exp (—?/2T), (2.42)

where T = (2K /3m)} and K is the kinetic energy of the system. Consider now a
small variation in the spatial density dp leading to a corresponding variation é¢
in the gravitational potential. Show that S is maximized when p and ¢ satisfy
equations (2.33). Also show that the second variation of § has the form
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Whether the extremum solution to (2.33) is stable or unstable is determined by
this second variation.

2.10 Isothermal sphere [2,N]

A self-gravitating system is described by equations (2.33) in the mean field limit.
The two equations may be combined to obtain

V?¢ = 4nGpcexp(—B [ (x) — $(0))), (2.44)

which describes an ‘isothermal sphere’. Introduce length, mass and energy scales
by the definitions

GM,
Ly

and express the radial distance r, density p, mass M (r) contained within a radius
r and potential ¢ in terms of these variables in dimensionless form:

I d G y=p8ld—¢(0)]. (2.46)

, n=L, m
Loy Pe M,

(a) Show that n = (2/x?),m = 2x,y = 2 In x is a solution to (2.44) and that
all other solutions to this equation tend to y = 2 In x for large x.

(b) Introduce the variables v = (m/x) and u = (nx’/m) and show that the
isothermal equations can be expressed as

Lo = (4nGpcp)'?, Mo=dnp.Li, ¢o=p"'= (2.45)

ude —__u-t , (2.47)

with the boundary conditions vy =0 atu = 3 and (dv/du) = —5/3 at (u,v) = (3,0).
Explain why a second-order differential equation could be reduced to a first-order
equation in terms of u and v. Integrate equation (2.47) numerically and plot v as
a function of u.

(¢) It is clear from the analysis in part (a) that an isothermal spheré extends to
infinity and has an infinite amount of mass. In order to obtain a more realistic
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solution, we may assume that the system is bounded by a spherical box of p, dins
R. We can now characterize the isothermal sphere by a dimensionless Parameyey
A= (RE/GM?). Show that an isothermal sphere cannot exist if 1 < i, Where
Aert = —=0.335, In other words, the entropy of a self-gravitating system has g
extremum only if 4 > A,

2.11 Gravity and degeneracy pressure [2]

The description in the last few problems relates to systems of point Palticles
Another class of systems which are of interest in astrophysics are self-gravitaling'
‘luid’ systems described by an equation of state of the form P = p{p)_ 4
degenerate Fermi gas of electrons or neutrons, for example, can be descﬁbed
such an equation of state. If the degeneracy pressure can balance the inward
pull of gravity, then it is possible to obtain a stable static configuratioy, g
configurations are of relevance in the study of the final stages of stellar Volutioy,
The purpose of this exercise is to derive the behaviour of systems SUDPOrteq by
the degeneracy pressure.

(a) As the material of the star is compressed, the individual atoms jog, their
identity and — if the temperature is not too high — the electrons be,,
degenerate Fermi gas. The equation of state of an ideal, degenerate Fer, -

was obtained in problem 1.12. It can be written as
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in the non-relativistic limit, and
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in the relativistic limit. Here m is the mass of the electron and m is th, Mass
of the proton, Show that such a gas becomes more and more ideal as the deﬂsity
increases and satisfies the condition:

e\ /m.A
o> (%) (%)= 0

(b) Further, show that, for a spherically symmetric system in which Pressure
balances gravity, the density p satisfies the equation

1d (P dp\__ 120G
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in the non-relativistic case, and
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in the relativistic case.
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(¢) Consider the solution to the non-relativistic case first. Argue from dimen-
sional considerations that the solution must have the form p(r) «c R=5f(r/R),
where R is the radius of the star. Hence, show that for such systems R oc M~/
and 7 oc M2 With a suitable transformation of variables, reduce the equation
and the boundary conditions to the form

1 d 2dy _ 172 ! _ _
xzﬂ(x dx) ==y’%, y(O)y=0, y(l)=0. (2.53)
Numerical integration shows that p(0) = 178 and y'(1) = —132. From these
values show that
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{(d) In the relativistic case, argue that the solution must have the form p(r) o
R~ f(r/R). Hence, show that M = M,, some fixed constant. Convert the
equation into the form

1 d 24y 3 . _
i (x d—;) ==y, YO =0 y1)=0. (2:55)
Numerical integration gives y{0) = 6.9 and y'(1) & —2.0. Using these values show
that
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if the gas is made up of neutrons. (For 4 = 2Z, My = 145Mg.)

2.12 Collisional evolution of gravitating systems [3]

The gravitational force acting on any particle in a self-gravitating system can be
divided into two parts, fo, + faue. The {5, is due to the gravitational potential
arising from the smooth distribution of matter. Since the matter is made up of
individual particles, there will be a deviation from the smooth force f,q,, and this
deviation is denoted by the fluctuating part of the force fau.. The latter part
produces a slow diffusion of particles in the momentum space. This process is
called ‘soft collisions’ and the time-scale for this process was estimated in problem
1.14.

In this exercise, we shall derive the equation satisfied by the distribution
function f (x,p, t} describing the system, taking into account the slow diffusion in
the momentum space due to soft collisions. In general, such a diffusion process
can be studied by an equation of the following kind:
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The right-hand side is the divergence of a particle current J* in the momentum
space which is characteristic of diffusive process. We shall now determine the
form of J*.




