Problem Set 8: Big Bang, Structure Formation, and Spherical Collapse

Astrophysics and Cosmology through Problems

Due 20 Nov. 2008

1. Statistical mechanics in an expanding universe, Padmanabhan 6.6

2. Consider a spherically symmetric slightly overdense region within a spatially flat (k = 0) homogenous
matter-dominated universe.

(a) Assuming that the region obeys the Friedmann equations with a small positive curvature (0 <
k < (aH)?), find out how overdensity:

_ p(t) —p(t)
o(t) = (1)
pu(t)
evolves with time, where py(t) is the background density and p is the density of the overdense

region.

(b) Can you combine the Newtonian Poisson equation, with the linearized continuity and Newton’s
2nd law in an expanding Universe to obtain the same result?

(¢) Now assume that the cosmic density is dominated by vacuum energy: pyoc = —Dyaec = const., at
late times. Numerically solve, and plot the evolution of §(¢) and §(a) through the transition from
matter-dominated to the vacuum-dominated era (a(t) is the cosmic scale factor).

3. Spherically symmetric evolution, Padmanabhan 7.10
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6.6 Statistical mechanics in an expanding universe {3]

of this formula, consider the absorption of radiation
avelength of 21cm. The absorption cross-section for

A {3 hv c\?
o=z (z) (——2kTsp) (5) 80—, (32
i-"!pere Tsp 1s the so-called ‘spin-temperature. It is defined by the relation
. Mup Vg )
R =X —— 5 623
Hdown P ( kTsp ( )

denote the number of atoms in the upper and lower energy

e to 21 cm absorption.

6.6 Statistical mechanics in an expanding universe 3]

3 shows that the universe was radiation dominated

a redshifts higher than zeg = 3.9 X 10°Qh?. In the radiation dominated phase,
the temperature will be greater than Teq = 9.20h? eV and will be increasing as
(14+z). As we go to earlier phases of the universe the radiation will produce
s of different kinds. These elementary particles will
her via different processes which will try to maintain
n the particles. In order to study the early phases
derstand how the material content of the

particle — antiparticle pair
be interacting with each ot
statistical equilibrium betwee
of the universe, one would like to un

universe changes as it expands.
{a) Consider some early epoch at which the universe was populated by different

species of particles such as electrons, positrons, muons, neutrinos, etc. Let
the distribution function for the particle species A be fq4(XP.t) Determine
the conditions under which we may assume these particles to be in statistical
equilibrium with (i) other particles and (i) radiation.

If the species A4 is in statistical equilibrium, then we can take the distribution

function to be
T d'p = i {ex [(Eo = 1a) /T4 @)1} fp, (629
where g4 is the spin degeneracy factor of the species, pa(T) is the chemical
potential, E (p) = (p* + mz)l/ 2 and T (f) is the temperature characterizing this
species at time ¢. The upper sign (+1) corresponds to fermions and the lower
sign (—1) is for bosons. Should the temperature be the same for all species and
photons, that is, should Ta=Tg=...=T?
{b) Express the number density of particles, (n), energy density (p) and pressure
(p) as integrals over the distribution function f (p)- Using these expressions show

that
d(sa’) =d {6-;3: (p+P— n,u)} = (%) d (na’). (6.25)
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86 6 Friedmann model and thermal history
Argue that the quantity s, defined by the first equation can be interpreted as the | (b) Since
entropy density of the universe. Under what conditions will the expansion of the : with photc
universe be treated as adiabatic? & density of
(c) Show that the energy density, number density and entropy density con- % like vV
tributed by highly relativistic (T > m) and non-degenerate (T > u) particles can i processes
be written as a is the ma:
7\ s (O 3 AN that neut
Prad=grad(§6)'r, ﬂ=l(-&7)T, s=4 E)T’ {6.26) Ia Tp =14
. , , () At
where {(m) is a Riemann zeta function of order m and e
-1
Ts\* 7 (Te) asa”, ne
Brad = ZEB (—fr) + E 38F (*:IT . (6.27) though tt
B F decrease :
=\, 3 T\’ become
A= Zgﬂ (_T) +3 ZF:gF (_T_ : (6.28) occurs w!
B , \ rest mass
Tp 7 Tk ) temperat!
= = = =1 . 6.29
1 ;gB(T) +st:gF(T 6Z) the phot
.. R . backwarc
Here Tg, T refer to the temperatures characterizing the distribution functions of Lill cont:
specific species of boson or fermion. What is the number density when T «m? Show
Also show that, during the radiation dominated era, the temperature of the T, will b
. . . - . 'y
universe at time ¢ 1s gIven by the equation Use this
2 icles
o~ —i2 (MY o~ _T_ 12 par.tlc
£ = 0.3g (Tz) = 1s (1Me\’) g2, (6.30) - X
of energ
(d) Consider a species of particles which was in equilibrium with the rest of the tempera
matter in the universe up to a time t = tp and ‘decouples’ at ¢ = ip. Fort > tp
we may assume that each of the particles of this species moves along a geodesic. :
Determine the distribution function for such a species at > tp. In particular, The scer
discuss the form of the distribution function if (i) the particles decouple when . amass.
they are extremely relativistic (Tp > m); or (i) the particles decouple when they 4 and dec
are non-relativistic (Tp € m). What is the energy density contributed by the | neutrine
decoupled species in either of the above cases? i i
6.7 Relics of relativistic particles [2] | Use thi
Consider the composition of the universe at a temperature slightly lower than = k
10'? K. We will assume that the universe is populated by electrons (€), positrons iy
(€), three species of massless neutrino (Ves Vus v;), neutrons (n), protons (p) and a8 (a) As
photons (7). 3 to con
{a) Estimate the number density of p, 0, €, & Ve, Vi and v, relative to the photon$ f proces:
| recoml

y at this temperature.




7.10 Spherically symmetric evolution f2] 101

7.10 Spherically symmetric evolution [2]

In the non-linear regime when & 2 1 it is not possible to solve equations for
-pressureless dust exactly. Some progress, however, can be made if we assume
that the solutions are spherically symmetric. We consider, at some initial epoch
¢, a spherical region of the universe which has a slight constant overdensity

' compared to the background. As the universe expands, the overdense region will

gxpand more stowly compared to the background, will reach a maximum radius,

= contract and virialize to form a bound non-linear system. Such a model is called

‘spherical top-hat’.
(a) Show that in the case of spherical symmetry the density contrast & satisfies

the equations

L M, 4 @F 34 _ () (@Y
8"+ 3,0 = 3(1+5)+2b25(1+5)’ A= (pc =) (7.49)
or
. 4 8 24
5—5—-—(1+5)+—a-5—4ﬁ69b5(1+5), (7.50)

where the dot denotes (d/dt) and the prime denotes (d/db); here b(t) is the
growing solution to the linear perturbation equation. Further, show that the
solution to (7.50) can be expressed in the form

_20M_[a0] o5 (2Y
00 = Q. Hid [R(x)] I_A(R) -1 (7.51)

where M is a constant and R(z) satisfies the equation

. GM 4xnG
B — —(p+3P) e R, (7.52)

in which (p + 3p)rest 18 due to components other than dust-like matter. Interpret

this equation.
(b) Assume that the background is described by a Q = 1, matter dominated

universe for which b = a = (t/to)*/*. In this case, show that the evolution of
density contrast can be expressed in the form 1+ 8(a) = 2GM/H}) [ /R¥@)],
where R(t) satisfies the equation

d*R GM

w-R k)
and M is a constant. Let R(t;) = ri where t; is the time at which initial conditions
are specified. Let M = (4m/3) ripo (8) (1 + &), with & > 0. Further assume that
(R¥/2),_. = (1 /2) HAZ.

(i) Show that the evolution of the density contrast (z) is given implicitly by
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102 7 Dynamics in the expanding universe
the functions [3(R), z(#)] with (b) Tt
at differ
AN 51+ z H\*? B
(142z)= (_) ﬂ_—l—_z,%/_} = (E) (_) __0_2/3, (1.54) power (j
3 (8 —sin @) 3/\3 (6 —sin ) . small sc;
, while the
9(0—sinf i
PR ( )3 _ (1.55) | equation
2(1 —cosf) affect th
. ] ower s
where 0; is the density contrast at the initial redshift z; and & = (3/5)6;(1 + E £ s '
zj) is the corresponding density contrast at the present epoch if the density rl the l’f(t)
perturbation grows according to linear theory. Also show that the density | inea
. . . | for large
contrast at any epoch, predicted by the linear theory, is ;
in a reg
3 73\ 2} A to relate
6]_ = g (Z) (9 — sm 6) 5 (756) density ¢
.. , ) n), if the
(ii} Compare the results for § and Jp at different epochs to estimate the i
accuracy of linear theory.
(ii) Prove that the spherical region reaches a maximum radius of ry, = (3x/58;)
at a redshift z;, such that (1 +z,) = (50/ 1.062) and the density contrast
at maximurn expansion is about 4.6. .
Given ar
(c) After reaching the maximum expansion, the matter will collapse inwards, at any I
1t is likely that the system will become virialized during the collapse and form a the non-|
gravitationally bound object. (i} Estimate the redshift z.; at which the virializa- mately),
tion occurs and (i} the density of the collapsed object. clustering
lines,
7.11 Scaling laws for spherical evolution [3] Let vy
) o ) . distance >
(a) Explain qualitatively how the evolution described in parts (c) and (d) of the i a mea
last problem becomes modified if the initial density is not constant in the spherical h(a, x) =
region but is given by some profile pi(r) at t = ¢;. the’Hubb
(b) Assume that the initial density profile is such that the energy E(M) of (a) Ar
a shell containing mass M is given by a power law E(M) = Eo(M/Mg)***. h= (2/3)
Describe the final density profile assuming that the evolution is self-similar. (b) Thi
contrast ¢
7.12 Self-similar evolution of Vlasov equation [2] " shall use .
At the next level of approximation, one would like to obtain non-linear solutions P Sh.OW t
to the collisionless Boltzmann equation. Needless to say, this is far more difficult e dcnsity cc
than in the case of pressureless dust. Some amount of progress can be made by ;!-(l’ aL W,
ven by

assuming that the evolution is self-similar in a finite region.
(a) Show that the Vlasov equation (see problem 7.3) admits self-similar solutions
of the form

f=r‘3“+”f(x 4 ) (7.57)

t_fi’ ta+l.-'3
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