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Problem Set 6: Introduction to General Relativity

Astrophysics and Cosmology through Problems

Due 30 Oct. 2008

. Accelerated frames, special relativity and gravity, Padmanabhan 5.1: parts (b) and (d)
. Gravity and the metric tensor, Padmanabhan 5.2
. Particle trajectories in a gravitational field, Padmanabhan 5.3: parts (b), (c), and (d)

. Schwarzschild metric, Padmanabhan 5.11: parts (b) and (c)
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5.1 Accelerated frames, special relativity and gravity {2]

Gombining special relativity with Newtonian gravity turns out to be far more
* difficult than one would have imagined @ priori. Any attempt to do so inevitably
. suggests a geometrical description for gravity. In this problem we shall examine
" some simple attempts to combine Newtonian gravity and special relativity and
‘how a geometrical description arises in the process.
{a) Let (T,X,Y,Z) be an inertial coordinate system. Consider an observer
oving along the X-axis of this frame with a constant acceleration g. We
'§i_ill construct a coordinate system (t,x, y,z) for the accelerated observer by the
following procedure. (i} The observer will use the proper time t shown by a clock
: ;r_i"iéd by him (her) for his (her) measurements. (ii) Let 2 be some event in the
Spacetime to which the observer has to attribute coordinates (¢, x, y, z). Since the
_{J__ﬁ_c_m is along the X-axis the observer can set y = Y, z = Z. To attribute the
1h,x) coordinates he (she) proceeds as follows. He (she) sends a light signal at
ime 1 = ¢, to this event. The light signal is reflected at the event 2 and the
Ll ._}"_Ver receives it back at time t = tg. The observer then attributes to the event
£ thf. time coordinate t = (t4 + tg)/2 and space coordinate x = (tg — £4}/2.
: §f_’-_ this criterion to determine the coordinate transformation between the
Tated and inertial observers to be

X =g ' coshgt, T =g 'e sinhgt. D
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5 General relativity
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5.2 Gravity and the metric tensor [2] 67

(d) Show that the dynamics of a particle in an external, weak (¢ < c?)
gravitational field can be derived from a purely ‘geometrical’ action of the form

4= —-mc/ds = —mcf v gix dx’ dxk (5.7

where
g dx’ dx = (1 + ZC—?) clde? - dx?. (5.8)

This result suggests that the Newtonian gravitational field can be thought of as
modifying the line interval ds*. Compare this result with the one obtained in (a)
above.

The above results imply that a weak gravitational field cannot be distinguished
from a modified spacetime interval as far as mechanical phenomena are concerned.

5.2 Gravity and the metric tensor [2]

The last problem shows that weak gravitational fields can be provided with a
geometrical description as far as mechanical phenomena are concerned. Einstein
made a bold generalization of this result by postulating that: all aspects of
gravitational physics allow a geometrical description. In other words, we generalize
the tentative conclusion of the preceding problem to include arbitrarily strong
gravitational fields and all possible physical phenomena. We will now explore
some elementary consequences of this postulate,

(a) To begin with, we shall generalize the result obtained in problem 5.1(d)
and postulate that the gravitational field will modify the spacetime interval to the

. form

ds® = gy (x)dx’ dx* (5.9)

4 where the metric tensor gy (x) characterizes a specific gravitational field. Show
- that: (i) it is not possible, in general, to change the coordinates from x' to some
* other x" such that ds? in the above equation reduces to the Lorentz form; (i} it

s,

, iowever, possible to choose coordinate systems such that, around any event
, the following conditions are satisfied: (1) gj,(P?) = nu; (2) (Fg,/0xF ) = 0.

- Can one make the second derivatives (9%gy/3x%9xP) at 2 vanish as well?
i g

(b) Since gj; cannot be reduced to any preassigned form, no coordinate system

" has a preferred status in the presence of a gravitational field. This implies that

laws of physics must be expressed in terms of physical quantities which are
Oordinate-independent. The simplest such entity is a tangent vector v’ to any
‘7““'8 x'(4) defined by v' = (dx'/dA). All other four-vectors will be defined to
Jqlgantities which transform similar to the tangent vector v’. Determine how a
Yector v transforms when the coordinate system is changed from x' to x". What
Sithe natural transformation law for such higher order tensors as T*, S'%, etc.?
(€ Treating the metric tensor gy as a matrix we can define its inverse g*

eh that g% o, = §i. Derive the transformation law for g*. Let g denote the



68 5 General relativity

determinant of gg. Show that

38 (08 _ _ ag®
% g (%) = sem (37 (5.10)
(d) We define the operation of ‘raising and lowering an index’ of a tensor by

using the appropriate form of metric tensor. That is, given T we define two new
tensors T', and Ty by the relations

T =guT®, Tk= giagis T (5.11)

Show that these are valid tensor operations in the sense that if these equations
are true in one frame they will be true in all frames.

5.3 Particle trajectories in a gravitational field [31

(a) In special relativity, the equation of motion for a free particle can be obtained
by varying the action

a b 1/2
=—-mfds=—mj (nab%%-) di. (5.12)

The variation of A gives (d*X?/dA?) = {du®/dA) = 0, where ut = {dX°/d1) is
the four-velocity which is a tangent vector to the curve X (A). This equation can
be written equivalently as

du® dx? ou® ouf “
i (2 (35) =+ () = =0 G0

Show that this is nor a valid tensor equation in the sense that the form of this
equation will not remain the same in an arbitrary coordinate system.

(b) To obtain the correct equation of motion, which is generally covariant, we
could proceed as follows. In any small region around an event, one can always
choose an inertial coordinate system. Hence, in such a small region, the form of
the action in equation (5.12) remains valid. In that small region Hap = Zab and so
we can also write the action in the form

a b 12
=—m/ds=—mf\/g,,;J dxe dxt =—m/ (gab%%) di. (5.14)

Since this action is made up of proper tensorial quantities it will remain valid in
any coordinate system. Hence, the equations derived from this action will provide
us with the correct generalization of equation (5.13).

Vary this action and show that the equation of motion for a particle in an

arbitrary spacetime is given by

dul
ﬁ + l"k,u"u' = 0, (515)
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5.4 Parallel transport 1] 69

i __1 ia dgk | 98ka gg_af.
Ty =38 ( et o T ok ) (5.16)

' ghow, further, that this equation can be written in the form u'uf; = 0, where the
i ‘:covariant derivative” of the vector ' is defined by the relation

i uty = ) + Tt (5.17)

| By its very construction, the covariant derivative will be a tensor, and defines a
~ patural generalization of the ordinary derivative to curved spacetime. How does
I, transform under a coordinate transformation?

{c} We shall use the definition of covariant derivative in equation (5.17) for
~ any vector field o' (x). We can generalize the notion of covariant derivative to
- other tensorial quantities by assuming that (1) the ‘chain rule’ of differentiation
* should remain valid; and (2) the covariant derivative of a scalar should be the

same as the ordinary derivative. Show, using these criteria, that (i) the covariant

derivative of v; differs from that of v! only in a sign:

bk = Oig — Dkl 3 (5.18)

(ii) for a mixed tensor the covariant derivative will appear with positive sign for
upper indices and negative sign for lower indices:

Tba;c = TE‘:,:: + rﬁch - rgch 0 (519)

Similar definitions can be used for any higher rank tensor.
(d) Show that covariant derivatives do not commute. More specifically, show

that
Ay — A%y =— a Al (5:20)

where
aTe  re
ihe = 6ch - _ax—fb + T —TET,- (5.21)

Is this quantity a tensor?

5.4 Parallel transport [1]

Consider a curve x () passing through an event # in spacetime. Let the
coordinates of 2 be x'(0). If v/ (x) is a vector field, then we can mterpret
the quantity o', (dx'/d1) to be the change of the vector field along a direction
specified by the tangent vector (dx'/dA). Show how this concept can be used to
generate a vector field from a given vector at 2. (This process is called ‘parallel

transport’.)



74 5 General relativity

the metric outside this region (ie. for r > R) has the form
(s

-1
ds? = ( 26M ) et — (1 - 2—6#) dr? — 7 (d6* +sin>0dg?) . (541)

1-=—

Also determine the metric due to a spherical shell of matter both inside and De
outside the shell. tion
(b) Consider the motion of a material particle of mass m in this metric. Show o
that the orbit of the particle can be determined from the equations (
oM\t dr 1o a2 2 (L 2GM =
(1- = ) E=E[‘g_v(r)] , rip= 3 I-—) (5.42) so?
i
where & and L are constants and uni:
2GM % sph

2 eyl
iy = (1-22) (1 =)\ (5:43) ?
att
L and describe qualita- ~ the

Plot the effective potential Ver (r) for different values of
tively the nature of orbits for various values of & and L.
(c) Consider an ultrarelativistic particle which is moving past a body of mass ]
M with velocity v S c. Let the impact parameter be R and the angle of deflection 3 Hhe
be 6¢. Calculate 3¢p. Show that 5¢ has twice the value it would have in the |
clativistic limit of v = c. Also estimate |

case of Newtonian gravity in the ultrar
of interaction between the two particles

i the corresponding deflection if the force
is electromagnetic rather than gravitational. What happens to the deflection as

» — c in the case of electromagnetic interaction?

5.12 Gravitational lensing {21

logical sources are defiected by the
This could lead, under favourable
f the source. Assume that all
the ‘deflector plane’, which is

Light rays reaching us from distant cosmo
gravitational field of intervening masses.
conditions, to the formation of multiple images ©

the deflection takes place when the light crosses
defined to be the plane containing the deflecting object and is perpendicular =

to the line connecting the source and the observer. It is convenient t0 project '
all relevent quantities on to this two-dimensional plane. Let s and i denote
the two-dimensional vectors giving the source and image positions on this twi
dimensional plane; and let d(i) be the (vectorial) deflection produced by the

lens.
(a) Show that the image an

d source positions are related by the equation

. Dus .
s=i——d(i),
Dos()

where L, S and O stand for lens, source and observer and Dis i
between the lens and the source, etc.

s the distan®
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