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3.11 Particle acceleration mechanisms [2 f) 43

3.10 Shock waves [2]

In the last two problems we considered situations in which gas flow can result in
nearly discontinuous changes in the parameters. This occurs generically when the
flow velocity changes from supersonic to subsonic values in some regions. Such
a nearly discontinuous transition in density, pressure, etc,, is called a shock.

Shocks arise in several astrophysical contexts in which there is a supersonic
flow of gas relative to a solid obstacle. (In the laboratory frame, this could arise
either because of an object moving through a fluid with supersonic velocities or
because gas flowing with supersonic velocities suddenly encounters an obstacle.)
Because of the boundary conditions near the solid body, the flow has to change
from supersonic to subsonic somewhere near the object. Further, this information
cannot reach upstream where the flow is supersonic. Hence, the pattern of flow
changes very rapidly over a short region, resulting in a shock wave. In the frame
in which the gas is at rest, we may consider the solid body to be moving with
supersonic speed and pushing the gas. This necessarily leads to steepening of
density profile at some place ahead of the body. We shall consider some of the
properties of shock waves in this problem.

(a) Idealize the surface of discontinuity as a plane with gas flow occurring
perpendicular to it, Let P1,p1,0) denote the state of the gas to the left of the
shock front and let p,, P2,y give the corresponding values on the right side.
Assume that the orientation of gas flow is such that the flow is supersonic on
the left side. Using the equations of flow for an ideal polytropic fluid with index
¥, relate the ratios (p2/p,), (p2/p1), (v2/21) and {T2/T) to the index y and the
Mach number M, = (v1/c,) on one side.

(b) Show that, under the conditions of the above problem, P> pLpr >
p1, T2 > Ty, v3 < vy and that the maximum possible increase in the density is by
afactor (y +1) /(y — 1).

{c) In the above analysis, it was assumed that the discontinuity occurs at a very
short region, so that it can be treated as infinitesimal for mathematical purposes.
Estimate the order of magnitude of various terms in the equations of fluid motion
with dissipation, and show that the discontinuity occurs over a region of the order
of mean-free-path.

(d) A gas in a semi-infinite cylindrical pipe is terminated by a piston at one end.
At ¢ = 0, the piston begins to move towards the positive x-axis with a constant
speed U. Determine the resulting gas flow.

3.11 Particle acceleration mechanisms 2]

Observations suggest that the energy spectrum of particles in many astrophysica!
contexts has a power law form. To generate and maintain such a power law, one
often requires mechanisms which will accelerate the particles. We shall explore
some general features of such acceleration mechanisms in this problem,
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by a photon) is

dE 4 VLA L
I—SUTCUrad}’ (E) = PinComp s {4.33)

where Upq = aT* is the energy density of the radiation field. In the non-relativistic
limit, for electrons with temperature T, this gives

(‘”3) o~ gaTcUmd (3”‘) . (4.36)
nr

dt mec?

Show that the average fractional energy gained by a photon per collision is

Ae\ _{8e) 45 32={(4/3)y2 if v=e)

Combining with (4.34) we find that the net energy change of photons in Compton
scattering with a thermal distribution of electrons with temperature T is

Ae hay AT,
—_— Y= —_—— — 4,
<€> 2, (438)

forv <ec.

The process described above acts as a major source of cooling for relativistic
plasma as well as a mechanism for producing high energy photons. The time-scale
for ‘Compton cooling’ of individual relativistic particle is

2 -4
a T 4 1073182 Trag

where Toq is the radiation temperature. In the case where electrons are non-
relativistic with temperature T, this time-scale is

kT, 1 ( m ) - ( Trad )“'
¢ == =13 %10 — 5. 4.40
Comp cool P inComp noT Trad 106K ( )

4.10 Comptonization [3]

The energy transfer between electrons and photons takes place through Compton
scattering. This process dominates when (i) scattering is more important than
true absorption; and (ii) the temperature of the low density electron gas is far
higher than the Planck distribution with the same energy. In that case, there is
net energy transfer from the electrons to the photons which distorts the original
photon spectrum. We will now work out the details of this process.

(a) In a scattering of a photon of frequency v with an electron of energy E,

resulting in a photon of frequency v and an electron of energy E', the energy
transfer is

h(v'—v)EhAE—(%)p-(ﬁ—”), (4.41)
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where p is the initia] momentum of the electron and # and i’ are the directions
of the initial and final photons. This is the lowest order result for (Av/v) and is
O (v/c). Prove this result.

(b) The evolution equation for photon number density in a homogeneous
medium is

-6% = fd3pfdQ (‘%) cn)(1+n(v))NE)—n ()L +r(DN(E)],

(4.42)
where (a’cr/a'Q) is the electron-photon scattering cross-section, n (v) is the photon
distribution function and N (E) is the electron distribution function. Explain the
origin of each of the terms in this equation.

{c} The integro-differential equation in (4.42) can be approximated as a differ-
ential equation when A <« 1. (This is similar to the approach used in problem
212} Expand n(v') =n(v + A) and N (E’} = N(E — hA) in a Taylor series in A,
retaining up to quadratic order. Assuming that N (E) is a Maxwellian distribution
with temperature T, show that equation (4.42) can now be written as

on h én
3 = (ﬁ) ('é; +nin+ l)) I

1/ h\?/d%n an
+§(ﬁ) (@+2(1+n)a+n(n+l))lz, (4.43)
where x = (hv/kT) and I, and I, are the integrals
i —fdJ il cN(E)A {4.44)
1= P dQ L] .
I = fd’ dof% N (E)A? (4.45)
1= P 0 . .

(d) Use the expression for average energy transfer AE = (hv/mc?) (hv — 4kT)
(see equation (4.38)) to show that

hv kT
L= (s ) @=0 =m0 (L) sa-. wag
(e} Using (4.41) evaluate I» and show that
v A2
Iy =2 (E) (kT) (mc) neor . (4.47)
Hence, arrive at the final form of the equation (called Kompaneet’s equation):

an _ i 3 4 on 2

3 = X ax [x (ax+n +n)] , (4.48)

where

kT
y=t (;PI-C—Z) ReOTC, (449)
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4.11 Quantum theory of radiation {3] 57

(f) In most of the astrophysically interesting cases one can ignore the n* term
with respect to #n. The evolution of the total energy of the photons,
2 4 o
Epho (¥} = 27) / n(x) x4nx*dx, {4.50)
Rl 0
can be then determined using (4.48). Show that, if n(x) vanishes suficiently fast
for large x, then

4 0 r ]
Eppo _ 37 (kT) [4 / nxidx — f nx"dx]. (4.51)
dy (hC) 0 ]

If one can further assume that most of the photon energy is concentrated at
x < 1, then we can ignore the second term with respect to the first on the
right-hand side. Show that, in that case, the photon energy, Eqpo, increases as

Epho )= Epho @) exp(4y). (4.52)
The characteristic e-folding time is
me? 1
comp = (Z'k_,]:) (m) . (4.53)

(g) Solve (4.48) when both n and n’ are ignorable compared to (dn/8x). Show
that the solution is

1 © 4 1 2
n(x,y}= W]o —fn(,u,O)exp [—34—]; (3y+ln i) } . {4.54)

Consider an initial distribution of photons with n(x,0) = x~!, which corresponds
to the Rayleigh—Jeans limit of the Planck spectrum. Show that this distribution
will evolve to

1

n(x,y) = x"'e ¥ (4.55)

due to Comptonization. Hence, the temperature of the radiation will appear to
have been diminished by a factor e~ at the Rayleigh-Jeans end. Such an effect
has been observed when microwave background radiation passes through hot
intergalactic gas in clusters.

(k) Equation (4.51) can also be used to study the change in the electron energy.
Since (Egno + Ee) should be a constant (dE./dy) = — (dEye/dy). Calculate
(dE./dy) when n(x) = ngexp (—x/a). What is the cooling rate of electrons for
o 17

4.11 Quantumn theory of radiation [3]

In the quantum mechanical treatment, an electromagentic field is treated as a
bunch of photons. The emission and absorption of radiation are to be represented
as processes which cause transitions between states with different numbers of




