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Problem Set 4: Instability, Turbulence, and Accretion

Astrophysics and Cosmology through Problems
Due 2 Oct. 2008

First, find an approximate formula for viscosity of a gas  as a function of molecular cross-section
and other properties of the gas. Then, recalling the definition of Reynolds number (Eq. 3.36 in
Padmanabhan), estimate its rough value inside:

e Amazon river

¢ Sun

® accretion disk around a quasar

¢ intergalactic medium of galaxy clusters

. Instabilities and Turbulence, Padmanabhan 3.7
. Accretion disk, Padmanabhan 3.13
. Find the relation between the thickness of an accretion disk and its local temperature

. As you saw in Problem 1, the molecular viscosity is very small in astrophysical accretion disks, and it

is often believed that turbulence is responsible for angular momentum transport. Can you define an
effective viscosity for turbulent disks of a given thickness? What qualitative factors could enhance the
angular momentum transport?
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3.8 Sound waves [2] 41
This process of energy transfer can go on till the viscous effects become important.
Let this happen at some small scale A;. Show that s = (L/R¥*), where R is the

Reynold’s number. Also show that the power spectrum of the velocity field in
the range L' < k < A is

S (k) oc &332, (3.39)

This is known as the Kolmogorov spectrum.

3.8 Sound waves [2]

() Show that a compressible ideal fluid supports the propagation of small dis-
turbances in density and pressure, in the form of a longitudinal wave, with

velocity
()" ()
o \dp/, p

What happens to the perturbations in vorticity or entropy?

Also show that: (i) the velocity perturbation is related to the pressure and
density perturbation by o' = (p'/pc;) = (csp'/p), where the perturbations are
indicated by primed quantities; (it) the temperature perturbation is refated to
the velocity perturbation by T' = ¢;,fTv'/c,, where § = (1/V) (6V/6T)p is the
coefficient of thermal expansion.

{b) The dissipative processes will dampen the amplitude of a sound wave
propagating through a fluid. Show that, in the lowest order of approximation,
the amplitude is attenuated by a factor exp {—yx), where

w? [(4 Cp =~ Cy
r= o [Gree) +(252))

(¢) If a smali disturbance is generated inside the fluid, it will propagate in all
directions with the speed of sound, relative to the fluid. When viewed from a

{3.40)

(3.41)

 fixed coordinate system, the disturbance will move with a velocity which is the
i . sum of sound velocity and the velocity of gas flow v. Different phenomena can
. arise depending on whether |v| > ¢, or |¥| < ¢5. Show that (i) if |v| < ¢;, then

.l'

the disturbance can eventualily reach all points in the fluid; while (ii) if |v| > ¢,
_lhen the disturbance is propagated downstream only inside a conical region with

- Opening angle o = sin~' (c,/|v]).
- (d) The analysis in part (a) above assumed that the amplitude of the disturbance

%28 small. But since ¢, was proportional to p!/3, regions of the fluid with higher

\density will be travelling faster. This will necessarily distort the shape of the

?izive and cause it to steepen. Such a distortion of shape cannot be understood
Hilinearized theory and we need to study the exact equations.

cli:Consider a one-dimensional fluid fiow which is isoentropic. All quantities

i Pend only on x and ¢ and we take p, = v(x,t),v, = v, = 0. Show that the



s increased by a factor
ocess. (For the sake of
be the probability that
mne collision. Show that

.e{gy Wlth
> (3.47)

h
scattering of relativistic
_in this case, p=1+
srer and We ignore terms
he clouds are sufficiently
e collisions. 1f the escape
is 7, estimate the index of

of particles by a moving

sosion will move through
nsity Pt pressure Pt. anFl

of high energy particles 18
ock. As these particles pass
»d by the turbulence 'behl'nd
1 their velocity distribution
either side. Argue that. the
the shock front from either

v (3.48)
¢’ E
1s the form n(EYdE o« E dE

) . k
rarelativistic while the shoc.

31
R embedded inside 2 _
due 10 gravitational attractio
the flow to be radia
gas is jdeal and poly

ow that there @
~ that (among :

i

jly inwafds =8
tropic with .

re six differeat 8
he siX) the“'a! :
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(b) Relate the accretion rate to the density and sound speed of the gas at
infinity and show

M = rG*M?

(5=3y)/2%y—1)
p (00}[ 2 ] . (3.49)

c3 (o) |5 — 3y

Also show how one can determine the velocity and density profiles everywhere.

3.13 Accretion disc [3]

Spherically symmetric accretion can occur only when the angular momentum of
the infalling matter is zero. In a more realistic situation one expects the gas
to form a disc around the central object and flow in a spiralling pattern. For
this process to occur it is necessary for the gas to lose the angular momentum
efficiently due to some viscous process.

{a) Consider a viscous accretion disc with an inner radius ryj, and outer radius
Fmax- 1t 18 assumed that: (i) there exists some suitable form of viscous stress which
transports angular momentum radiaily outward; and (ii) the gas flows in nearly
Keplerian orbits and spirals inwards slowly. The same viscous stress will also
transport energy, some of which will be dissipated locally. Show that, in a steady
state, the energy dissipated in an annular ring between r and (r + dr) is

| dE |= %Mv; (r) g, (3.50)

where M is the mass flowing through the disc per unit time.
(b) Assume that this energy is radiated from each annular ring in the form of
a blackbody with a temperature T (r). The net spectra of the accretion disc will

£ bea superposition of blackbody radiation with different temperatures. Show that
. theintensity scales approximately as I, ec v!/* in the Rayleigh-Jeans limit.

3.14 The Sedov solution for a strong explosion [3,N]

An explosion can release a large amount of energy E into an ambient gas on
§ g_lime-scale which is extremely small. This will result in the propagation of a
 S$pherical shock wave centred at the location of the explosion. The resulting flow

- i} The explosion is idealized as one which releases energy E instantaneously at
he ofigin. The shock wave is taken to be so strong that the pressure p; behind
I€ shock is far greater than the pressure p; of the undisturbed gas.

(1) We neglect the original energy of the ambient gas in comparison with the
*!_' E which it acquires as a result of the explosion.

\ }_“)_ We take the gas flow to be governed by the equations appropriate for an
iiabatic polytropic gas with index y.

. (i) the flow .
he velocity "(_r 3

Wing constraints

s (i) ¢ A:rrgue, from dimensional considerations, that the position of the shock front
nall radius; (1

i .e ! is given by R{(t) oc (Etz/pl)l':s. Solve the equations of gas flow by




