Problem Set 10: Gravitational Radiation and Lensing

Astrophysics and Cosmology through Problems
Due 4 December 2008

I will put some useful notes for gravity waves here, as they are not covered by Padmanabhan.
The problems will not require use of all these formulae, but I include them for reference. For weak

gravitational fields, the metric of spacetime is nearly that of flatspace; that is,

uv = Nuv + h;u/

where h,,, < 1 and obeys (semicolons are covariant derivatives, commas are partial derivatives):

- 1
h/u/ = h/u/ - §hgn/u/

Ohyw = his, =0

he = 0 “Lorentz gauge”

huo =0 hg =0  “Transverse-traceless” gauge

(you use either one gauge or the other, but not both!). The stress-energy tensor for gravity waves
is

1 .
GW k

where the brackets denote an averaging over several wavelengths; this formula was derived in T'T
gauge (see, e.g., Misner-Thorne-Wheeler Sec. 36.7).

The gravity wave power emitted by a nearly-Newtonian, slow-moving (v < ¢) source is:
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_ /27 = gik
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where the brackets here indicate averaging over a few periods of the objects motion (assuming

periodicity) and
Ly = 5,42 pd?
ik = [ (@jen = 3057 pdx
is the reduced quadrupole moment tensor.

1. An angry Toronto motorist shakes his fist at another motorist. Using order-of-magnitude
estimates, calculate the power of the gravity waves he emits, and calculate what fraction of

the total energy he uses goes into gravity waves.



. Two stars of mass M; and M, separated by a distance R revolve about each other in a
non-relativistic orbit. Due to gravitational radiation dissipating their energy, R evolves in

time. Find R(t). How long will it take for their orbit to entirely decay away?

. Padmanabhan 5.12.
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74 5 General relativity

the metric outside this region (ie. for r > R) has the form
-1
i = (1 L ) ar — (1 _xH ) 4% (d6° +sin?047). (54D

Also determine the metric due to 2 spherical shell of matter both inside and
outside the shell.

(b) Consider the motion of a material particle of mass m in this metric. Show
that the orbit of the particle can be determined from the equations

2GM\ " dr _ L2, Pé= L 26M
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where & and L are constants and

2
Vi =m [(1 - 2—671\5'-) (1 + 'n%i'ﬁﬂ . (5.43)

Plot the effective potential Ve (r} for different values of L and describe qualita-
tively the nature of orbits for various values of & and L.

(c) Consider an ultrarelativistic particle which is moving past 2 body of mass
M with velocity v S ¢ Let the impact parameter be R and the angle of deflection
be 6¢. Calculate 5¢. Show that o¢ has twice the value it would have in the
case of Newtonian gravity in the ultrarelativistic Himit of v = ¢. Also estimate
the corresponding deflection if the force of interaction between the two particles
is electromagnetic rather than gravitational. What happens 10 the deflection as

p — c in the case of electromagnetic interaction?

5,12 Gravitational lensing [2]

Light rays reaching us from distant cosmological sources are deflected by the
gravitational field of intervening masses. This could lead, under favourable
conditions, to the formation of multiple images of the source. Assume that all
the deflection takes place when the light crosses the ‘deflector plane’, which is
defined to be the plane containing the deflecting object and is perpendicular
to the line connecting the source and the observer. Tt is convenient to project
all relevent quantities on to this two-dimensional plane. Let s and i denote
the two-dimensional vectors giving the source and image positions on this two-
dimensional plane; and let d() be the {vectorial) deflection produced by the

lens.
(a) Show that the image and source positions are related by the equation
o= i— D54, (5.44)
Dos

where L, S and O stand for lens, source and observer and Dys is the distance
between the lens and the source, etc.
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{(b) The deflection produced by the lens can be related to the surface density

X(x) of the intervening mass distribution. Show that

(i) = f‘%’zﬂ / Px Z(x)i(iljfl—)z. (5.45)
Describe qualitatively the behaviour of the function Z(x) when the mass distribu-
tion is spherically symmetric. Argue that, for spherically symmetric, non-singular
mass distributions there will be either one or three images.

(c) Show that the images can be amplified (or de-amplified) with respect to the
source. Find an expression for the amplification in terms of the position s of the
source.

(d) Relate the source and image position when the lensing is due to (i) a
uniform sheet with surface density Xy; (ii) a point mass M; (iii} an isothermal
sphere with a small core radius. Calculate the amplification in each of these cases.

() Let us choose a coordinate system in the lensing plane such that the source is
at the origin. Show that the location of the images can be obtained by calculating
the extremum of the function

P@i) = %iz ~p(i), (5.46)
where
w(i) = i%-g:—“ ] &% £(x) In (ji — xI). (5.47)



